15 research outputs found

    Wireless multimedia sensor networks, security and key management

    Get PDF
    Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. These mentioned characteristics, challenges, and requirements of designing WMSNs open many research issues and future research directions to develop protocols, algorithms, architectures, devices, and testbeds to maximize the network lifetime while satisfying the quality of service requirements of the various applications. In this thesis dissertation, we outline the design challenges of WMSNs and we give a comprehensive discussion of the proposed architectures and protocols for the different layers of the communication protocol stack for WMSNs along with their open research issues. Also, we conduct a comparison among the existing WMSN hardware and testbeds based on their specifications and features along with complete classification based on their functionalities and capabilities. In addition, we introduce our complete classification for content security and contextual privacy in WSNs. Our focus in this field, after conducting a complete survey in WMSNs and event privacy in sensor networks, and earning the necessary knowledge of programming sensor motes such as Micaz and Stargate and running simulation using NS2, is to design suitable protocols meet the challenging requirements of WMSNs targeting especially the routing and MAC layers, secure the wirelessly exchange of data against external attacks using proper security algorithms: key management and secure routing, defend the network from internal attacks by using a light-weight intrusion detection technique, protect the contextual information from being leaked to unauthorized parties by adapting an event unobservability scheme, and evaluate the performance efficiency and energy consumption of employing the security algorithms over WMSNs

    Probabilistic analysis of security attacks in cloud environment using hidden Markov models

    Get PDF
    © 2020 John Wiley & Sons, Ltd. The rapidly growing cloud computing paradigm provides a cost-effective platform for storing, sharing, and delivering data and computation through internet connectivity. However, one of the biggest barriers for massive cloud adoption is the growing cybersecurity threats/risks that influence its confidence and feasibility. Existing threat models for clouds may not be able to capture complex attacks. For example, an attacker may combine multiple security vulnerabilities into an intelligent, persistent, and sequence of attack behaviors that will continuously act to compromise the target on clouds. Hence, new models for detection of complex and diversified network attacks are needed. In this article, we introduce an effective threat modeling approach that has the ability to predict and detect the probability of occurrence of various security threats and attacks within the cloud environment using hidden Markov models (HMMs). The HMM is a powerful statistical analysis technique and is used to create a probability matrix based on the sensitivity of the data and possible system components that can be attacked. In addition, the HMM is used to provide supplemental information to discover a trend attack pattern from the implicit (or hidden) raw data. The proposed model is trained to identify anomalous sequences or threats so that accurate and up-to-date information on risk exposure of cloud-hosted services are properly detected. The proposed model would act as an underlying framework and a guiding tool for cloud systems security experts and administrators to secure processes and services over the cloud. The performance evaluation shows the effectiveness of the proposed approach to find attack probability and the number of correctly detected attacks in the presence of multiple attack scenarios

    An efficient design of 45-nm CMOS low-noise charge sensitive amplifier for wireless receivers

    Get PDF
    Amplifiers are widely used in signal receiving circuits, such as antennas, medical imaging, wireless devices and many other applications. However, one of the most challenging problems when building an amplifier circuit is the noise, since it affects the quality of the intended received signal in most wireless applications. Therefore, a preamplifier is usually placed close to the main sensor to reduce the effects of interferences and to amplify the received signal without degrading the signal-to-noise ratio. Although different designs have been optimized and tested in the literature, all of them are using larger than 100 nm technologies which have led to a modest performance in terms of equivalent noise charge (ENC), gain, power consumption, and response time. In contrast, we consider in this paper a new amplifier design technology trend and move towards sub 100 nm to enhance its performance. In this work, we use a pre-well-known design of a preamplifier circuit and rebuild it using 45 nm CMOS technology, which is made for the first time in such circuits. Performance evaluation shows that our proposed scaling technology, compared with other scaling technology, extremely reduces ENC of the circuit by more than 95%. The noise spectral density and time resolution are also reduced by 25% and 95% respectively. In addition, power consumption is decreased due to the reduced channel length by 90%. As a result, all of those enhancements make our proposed circuit more suitable for medical and wireless devices

    A Secure Cluster-Based Multipath Routing Protocol for WMSNs

    Get PDF
    The new characteristics of Wireless Multimedia Sensor Network (WMSN) and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images) as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature) in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption

    A Lightweight and Efficient Digital Image Encryption Using Hybrid Chaotic Systems for Wireless Network Applications

    Get PDF
    Due to limited processing capabilities and other constraints of most wireless networks, many existing security algorithms do not consider the network efficiency. This is because most of these security solutions exhibit intolerable overhead and consider only securing scalar data, which are not suitable for other data types such as digital images, hence affecting the provided security level and network performance. Thus, in this paper, we propose a lightweight and efficient security scheme based on chaotic algorithms to efficiently encrypt digital images. Our proposed algorithm handles digital images in two phases: Firstly, digital images are split into blocks and compressed by processing them in frequency domain instead of Red-Green-Blue (RGB) domain. The ultimate goal is to reduce their sizes to speed up the encryption process and to break the correlation among image pixel values. Secondly, 2D Logistic chaotic map is deployed in key generation, permutation, and substitution stages for image pixel shuffling and transposition. In addition, 2D Henon chaotic map is deployed to change the pixel values in the diffusion stage in order to enhance the required level of security and resist various security attacks. Security performance analysis based on standard test images shows that our proposed scheme overcomes the performance of other existing techniques

    A New Covid-19 Tracing Approach using Machine Learning and Drones Enabled Wireless Network

    No full text
    The continuous advancements in wireless network systems have reshaped the healthcare systems towards using emerging communication technologies at different levels. This paper makes two major contributions. Firstly, a new monitoring and tracking wireless system is developed to handle the COVID-19 spread problem. Unmanned aerial vehicles (UAVs), i.e., drones, are used as base stations as well as data collection points from Internet of Things (IoT) devices on the ground. These UAVs are also able to exchange data with other UAVs and cloud servers. Secondly, this paper introduces a new reinforcement learning (RL) framework for learning the optimal signal-aware UAV trajectories under quality of service constraints. The proposed RL algorithm is instrumental in making the UAV movement decisions that maximize the signal power at the receiver and the data collected from the ground agents. Simulation experiments confirm that the system overcomes conventional wireless monitoring systems and demonstrates efficiency especially in terms of flexible continues connectivity, line-of sight visibility, and collision avoidance

    A Cross-Layer-Based Clustered Multipath Routing with QoS-Aware Scheduling for Wireless Multimedia Sensor Networks

    No full text
    Wireless multimedia sensor networks (WMSNs) can handle different traffic classes of multimedia content (video, audio streams, and still images) as well as scalar data over the network. To ensure correct delivery of real-time multimedia data and efficient resource utilization, a proposed solution should provide both quality of service (QoS) assurance and energy efficiency. In this paper, we propose a cross-layer-based routing protocol that can utilize MAC-layer QoS-based scheduling for more efficient routing mechanism in WMSNs. Our proposed optimization is based on clustered multipath routing protocol and adaptive QoS-aware scheduling for the different traffic classes in WMSNs. Our design exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths along with the adaptive scheduling to support reliable, high-throughput, and energy-efficient multimedia transmission in WMSNs. Simulation results show a significant performance improvement of our proposed design when compared to other similar routing schemes

    IoT-Based Surveillance Camera Distribution Using Triangle Geometry

    No full text
    IoT systems provide excellent solutions to many applications in both civilian and military aspects. This is even facilitated by the advent of many types of cameras with the diminishing cost of communication devices. We focus on the surveillance system that collaboratively monitors an intended area. A good design of such systems should ensure complete coverage with the ability to detect and track objects. Existing surveillance systems produce sensing coverage redundancy with extra communication overhead and cost. This paper presents an IoT-based surveillance system that exhibits many features. First, it provides an efficient distributed network clustering algorithm based on the Field of View (FoV) of cameras. Second, maximum area coverage can be achieved with a minimum number of camera sensors. Simulation results show that our proposed camera distribution algorithm outperforms other existing techniques in terms of the needed number of cameras, coverage percentage, and cluster size. We also believe that the efficiency of our algorithm can be improved with the involvement of the reinforcement learning approach where dynamic camera adaptation can be achieved based on the traffic distribution and changing conditions in the surveillance area
    corecore